Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
2.
Cell Rep ; 42(6): 112613, 2023 May 29.
Article in English | MEDLINE | ID: covidwho-2328166

ABSTRACT

Certain serum proteins, including C-reactive protein (CRP) and D-dimer, have prognostic value in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nonetheless, these factors are non-specific, providing limited mechanistic insight into the peripheral blood mononuclear cell (PBMC) populations that drive the pathogenesis of severe COVID-19. To identify cellular phenotypes associated with disease, we performed a comprehensive, unbiased analysis of total and plasma-membrane PBMC proteomes from 40 unvaccinated individuals with SARS-CoV-2, spanning the whole disease spectrum. Combined with RNA sequencing (RNA-seq) and flow cytometry from the same donors, we define a comprehensive multi-omic profile for each severity level, revealing that immune-cell dysregulation progresses with increasing disease. The cell-surface proteins CEACAMs1, 6, and 8, CD177, CD63, and CD89 are strongly associated with severe COVID-19, corresponding to the emergence of atypical CD3+CD4+CEACAM1/6/8+CD177+CD63+CD89+ and CD16+CEACAM1/6/8+ mononuclear cells. Utilization of these markers may facilitate real-time patient assessment by flow cytometry and identify immune populations that could be targeted to ameliorate immunopathology.

3.
BMJ Open ; 12(11): e063159, 2022 11 07.
Article in English | MEDLINE | ID: covidwho-2108282

ABSTRACT

OBJECTIVE: Healthcare workers (HCWs) are at higher risk of SARS-CoV-2 infection than the general population. This group is pivotal to healthcare system resilience during the COVID-19, and future, pandemics. We investigated demographic, social, behavioural and occupational risk factors for SARS-CoV-2 infection among HCWs. DESIGN/SETTING/PARTICIPANTS: HCWs enrolled in a large-scale sero-epidemiological study at a UK university teaching hospital were sent questionnaires spanning a 5-month period from March to July 2020. In a retrospective observational cohort study, univariate logistic regression was used to assess factors associated with SARS-CoV-2 infection. A Least Absolute Shrinkage Selection Operator regression model was used to identify variables to include in a multivariate logistic regression model. RESULTS: Among 2258 HCWs, highest ORs associated with SARS-CoV-2 antibody seropositivity on multivariate analysis were having a household member previously testing positive for SARS-CoV-2 antibodies (OR 6.94 (95% CI 4.15 to 11.6); p<0.0001) and being of black ethnicity (6.21 (95% CI 2.69 to 14.3); p<0.0001). Occupational factors associated with a higher risk of seropositivity included working as a physiotherapist (OR 2.78 (95% CI 1.21 to 6.36); p=0.015) and working predominantly in acute medicine (OR 2.72 (95% CI 1.57 to 4.69); p<0.0001) or medical subspecialties (not including infectious diseases) (OR 2.33 (95% CI 1.4 to 3.88); p=0.001). Reporting that adequate personal protective equipment (PPE) was 'rarely' available had an OR of 2.83 (95% CI 1.29 to 6.25; p=0.01). Reporting attending a handover where social distancing was not possible had an OR of 1.39 (95% CI 1.02 to 1.9; p=0.038). CONCLUSIONS: The emergence of SARS-CoV-2 variants and potential vaccine escape continue to threaten stability of healthcare systems worldwide, and sustained vigilance against HCW infection remains a priority. Enhanced risk assessments should be considered for HCWs of black ethnicity, physiotherapists and those working in acute medicine or medical subspecialties. Workplace risk reduction measures include ongoing access to high-quality PPE and effective social distancing measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Retrospective Studies , Health Personnel , Risk Factors , Antibodies, Viral , United Kingdom/epidemiology , Demography
4.
J Infect ; 85(5): 557-564, 2022 11.
Article in English | MEDLINE | ID: covidwho-2007856

ABSTRACT

OBJECTIVES: To describe the risk factors for SARS-CoV-2 infection in UK healthcare workers (HCWs). METHODS: We conducted a prospective sero-epidemiological study of HCWs at a major UK teaching hospital using a SARS-CoV-2 immunoassay. Risk factors for seropositivity were analysed using multivariate logistic regression. RESULTS: 410/5,698 (7·2%) staff tested positive for SARS-CoV-2 antibodies. Seroprevalence was higher in those working in designated COVID-19 areas compared with other areas (9·47% versus 6·16%) Healthcare assistants (aOR 2·06 [95%CI 1·14-3·71]; p=0·016) and domestic and portering staff (aOR 3·45 [95% CI 1·07-11·42]; p=0·039) had significantly higher seroprevalence than other staff groups after adjusting for age, sex, ethnicity and COVID-19 working location. Staff working in acute medicine and medical sub-specialities were also at higher risk (aOR 2·07 [95% CI 1·31-3·25]; p<0·002). Staff from Black, Asian and minority ethnic (BAME) backgrounds had an aOR of 1·65 (95% CI 1·32 - 2·07; p<0·001) compared to white staff; this increased risk was independent of COVID-19 area working. The only symptoms significantly associated with seropositivity in a multivariable model were loss of sense of taste or smell, fever, and myalgia; 31% of staff testing positive reported no prior symptoms. CONCLUSIONS: Risk of SARS-CoV-2 infection amongst HCWs is highly heterogeneous and influenced by COVID-19 working location, role, age and ethnicity. Increased risk amongst BAME staff cannot be accounted for solely by occupational factors.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Health Personnel , Hospitals, Teaching , Humans , Prospective Studies , Risk Factors , Seroepidemiologic Studies , United Kingdom/epidemiology
5.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-1695175

ABSTRACT

Clotting Factor V (FV) is primarily synthesised in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes and T regulatory cells as sources of increased FV in hospitalised patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system. Graphical

6.
iScience ; 25(3): 103971, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1699877

ABSTRACT

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

7.
Nat Commun ; 13(1): 751, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1684022

ABSTRACT

Understanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , SARS-CoV-2/genetics , Universities , COVID-19/prevention & control , COVID-19/virology , Contact Tracing , Genome, Viral/genetics , Genomics , Humans , Phylogeny , RNA, Viral/genetics , Risk Factors , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Students , United Kingdom/epidemiology , Universities/statistics & numerical data
8.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: covidwho-1672233

ABSTRACT

Identifying linked cases of infection is a critical component of the public health response to viral infectious diseases. In a clinical context, there is a need to make rapid assessments of whether cases of infection have arrived independently onto a ward, or are potentially linked via direct transmission. Viral genome sequence data are of great value in making these assessments, but are often not the only form of data available. Here, we describe A2B-COVID, a method for the rapid identification of potentially linked cases of COVID-19 infection designed for clinical settings. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and evolutionary analysis of genome sequences to assess whether data collected from cases of infection are consistent or inconsistent with linkage via direct transmission. A retrospective analysis of data from two wards at Cambridge University Hospitals NHS Foundation Trust during the first wave of the pandemic showed qualitatively different patterns of linkage between cases on designated COVID-19 and non-COVID-19 wards. The subsequent real-time application of our method to data from the second epidemic wave highlights its value for monitoring cases of infection in a clinical context.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Pandemics , Retrospective Studies , SARS-CoV-2/genetics
9.
Elife ; 102021 11 16.
Article in English | MEDLINE | ID: covidwho-1518777

ABSTRACT

Background: Respiratory protective equipment recommended in the UK for healthcare workers (HCWs) caring for patients with COVID-19 comprises a fluid-resistant surgical mask (FRSM), except in the context of aerosol generating procedures (AGPs). We previously demonstrated frequent pauci- and asymptomatic severe acute respiratory syndrome coronavirus 2 infection HCWs during the first wave of the COVID-19 pandemic in the UK, using a comprehensive PCR-based HCW screening programme (Rivett et al., 2020; Jones et al., 2020). Methods: Here, we use observational data and mathematical modelling to analyse infection rates amongst HCWs working on 'red' (coronavirus disease 2019, COVID-19) and 'green' (non-COVID-19) wards during the second wave of the pandemic, before and after the substitution of filtering face piece 3 (FFP3) respirators for FRSMs. Results: Whilst using FRSMs, HCWs working on red wards faced an approximately 31-fold (and at least fivefold) increased risk of direct, ward-based infection. Conversely, after changing to FFP3 respirators, this risk was significantly reduced (52-100% protection). Conclusions: FFP3 respirators may therefore provide more effective protection than FRSMs for HCWs caring for patients with COVID-19, whether or not AGPs are undertaken. Funding: Wellcome Trust, Medical Research Council, Addenbrooke's Charitable Trust, NIHR Cambridge Biomedical Research Centre, NHS Blood and Transfusion, UKRI.


Subject(s)
COVID-19/prevention & control , Health Personnel , Masks , Respiratory Protective Devices , Adult , Aerosols , Aged , COVID-19/epidemiology , Humans , Incidence , Infection Control/methods , Middle Aged , Models, Theoretical , SARS-CoV-2 , United Kingdom , Young Adult
11.
Elife ; 102021 08 24.
Article in English | MEDLINE | ID: covidwho-1371047

ABSTRACT

SARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and viral genome sequence data, we show an uneven pattern of transmission between individuals, with patients being much more likely to be infected by other patients than by HCWs. Further, the data were consistent with a pattern of superspreading, whereby 21% of individuals caused 80% of transmission events. Our study provides a detailed retrospective analysis of nosocomial SARS-CoV-2 transmission, and sheds light on the need for intensive and pervasive infection control procedures.


The COVID-19 pandemic, caused by the SARS-CoV-2 virus, presents a global public health challenge. Hospitals have been at the forefront of this battle, treating large numbers of sick patients over several waves of infection. Finding ways to manage the spread of the virus in hospitals is key to protecting vulnerable patients and workers, while keeping hospitals running, but to generate effective infection control, researchers must understand how SARS-CoV-2 spreads. A range of factors make studying the transmission of SARS-CoV-2 in hospitals tricky. For instance, some people do not present any symptoms, and, amongst those who do, it can be difficult to determine whether they caught the virus in the hospital or somewhere else. However, comparing the genetic information of the SARS-CoV-2 virus from different people in a hospital could allow scientists to understand how it spreads. Samples of the genetic material of SARS-CoV-2 can be obtained by swabbing infected individuals. If the genetic sequences of two samples are very different, it is unlikely that the individuals who provided the samples transmitted the virus to one another. Illingworth, Hamilton et al. used this information, along with other data about how SARS-CoV-2 is transmitted, to develop an algorithm that can determine how the virus spreads from person to person in different hospital wards. To build their algorithm, Illingworth, Hamilton et al. collected SARS-CoV-2 genetic data from patients and staff in a hospital, and combined it with information about how SARS-CoV-2 spreads and how these people moved in the hospital . The algorithm showed that, for the most part, patients were infected by other patients (20 out of 22 cases), while staff were infected equally by patients and staff. By further probing these data, Illingworth, Hamilton et al. revealed that 80% of hospital-acquired infections were caused by a group of just 21% of individuals in the study, identifying a 'superspreader' pattern. These findings may help to inform SARS-CoV-2 infection control measures to reduce spread within hospitals, and could potentially be used to improve infection control in other contexts.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Disease Outbreaks/statistics & numerical data , Hospitals/statistics & numerical data , Female , Humans , Male , Middle Aged , Retrospective Studies
12.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1230571

ABSTRACT

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Lymphocyte Activation/immunology , SARS-CoV-2/immunology , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/genetics , Cytokines/metabolism , Disease Susceptibility , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Longitudinal Studies , Lymphocyte Activation/genetics , Oxidative Phosphorylation , Phenotype , Prognosis , Reactive Oxygen Species/metabolism , Severity of Illness Index , Transcriptome
14.
Elife ; 102021 04 08.
Article in English | MEDLINE | ID: covidwho-1173059

ABSTRACT

The BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech) is being utilised internationally for mass COVID-19 vaccination. Evidence of single-dose protection against symptomatic disease has encouraged some countries to opt for delayed booster doses of BNT162b2, but the effect of this strategy on rates of asymptomatic SARS-CoV-2 infection remains unknown. We previously demonstrated frequent pauci- and asymptomatic SARS-CoV-2 infection amongst healthcare workers (HCWs) during the UK's first wave of the COVID-19 pandemic, using a comprehensive PCR-based HCW screening programme (Rivett et al., 2020; Jones et al., 2020). Here, we evaluate the effect of first-dose BNT162b2 vaccination on test positivity rates and find a fourfold reduction in asymptomatic infection amongst HCWs ≥12 days post-vaccination. These data provide real-world evidence of short-term protection against asymptomatic SARS-CoV-2 infection following a single dose of BNT162b2 vaccine, suggesting that mass first-dose vaccination will reduce SARS-CoV-2 transmission, as well as the burden of COVID-19 disease.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Asymptomatic Infections/therapy , BNT162 Vaccine , COVID-19/diagnosis , COVID-19 Vaccines/administration & dosage , Health Personnel , Humans , Immunization Schedule , Immunization, Secondary , SARS-CoV-2/isolation & purification , Vaccination
15.
Lancet Infect Dis ; 20(11): 1263-1272, 2020 11.
Article in English | MEDLINE | ID: covidwho-643826

ABSTRACT

BACKGROUND: The burden and influence of health-care associated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is unknown. We aimed to examine the use of rapid SARS-CoV-2 sequencing combined with detailed epidemiological analysis to investigate health-care associated SARS-CoV-2 infections and inform infection control measures. METHODS: In this prospective surveillance study, we set up rapid SARS-CoV-2 nanopore sequencing from PCR-positive diagnostic samples collected from our hospital (Cambridge, UK) and a random selection from hospitals in the East of England, enabling sample-to-sequence in less than 24 h. We established a weekly review and reporting system with integration of genomic and epidemiological data to investigate suspected health-care associated COVID-19 cases. FINDINGS: Between March 13 and April 24, 2020, we collected clinical data and samples from 5613 patients with COVID-19 from across the East of England. We sequenced 1000 samples producing 747 high-quality genomes. We combined epidemiological and genomic analysis of the 299 patients from our hospital and identified 35 clusters of identical viruses involving 159 patients. 92 (58%) of 159 patients had strong epidemiological links and 32 (20%) patients had plausible epidemiological links. These results were fed back to clinical, infection control, and hospital management teams, leading to infection-control interventions and informing patient safety reporting. INTERPRETATION: We established real-time genomic surveillance of SARS-CoV-2 in a UK hospital and showed the benefit of combined genomic and epidemiological analysis for the investigation of health-care associated COVID-19. This approach enabled us to detect cryptic transmission events and identify opportunities to target infection-control interventions to further reduce health-care associated infections. Our findings have important implications for national public health policy as they enable rapid tracking and investigation of infections in hospital and community settings. FUNDING: COVID-19 Genomics UK funded by the Department of Health and Social Care, UK Research and Innovation, and the Wellcome Sanger Institute.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Cross Infection/epidemiology , Cross Infection/prevention & control , Infection Control/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coronavirus Infections/virology , Cross Infection/virology , England/epidemiology , Female , Genome, Viral/genetics , Hospitals, University , Humans , Infant , Infant, Newborn , Male , Middle Aged , Patient Safety , Phylogeny , Pneumonia, Viral/virology , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Prospective Studies , SARS-CoV-2 , Whole Genome Sequencing/methods , Young Adult
16.
Elife ; 92020 06 19.
Article in English | MEDLINE | ID: covidwho-607959

ABSTRACT

Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARS-CoV-2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID-19) also tested positive for SARS-CoV-2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARS-CoV-2 rapidly declined to near-zero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID-19 during the ongoing UK 'lockdown'. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent 'hubs' of SARS-CoV-2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume on-site work safely.


Subject(s)
Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/transmission , Health Personnel , Mass Screening/statistics & numerical data , Occupational Diseases/prevention & control , Pandemics , Pneumonia, Viral/transmission , Adult , Asymptomatic Diseases , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Community-Acquired Infections/transmission , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , England/epidemiology , Family Characteristics , Female , Hospital Units , Hospitals, Teaching/organization & administration , Hospitals, Teaching/statistics & numerical data , Hospitals, University/organization & administration , Hospitals, University/statistics & numerical data , Humans , Infection Control , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Male , Mass Screening/organization & administration , Middle Aged , Nasopharynx/virology , Occupational Diseases/epidemiology , Pandemics/prevention & control , Patient Admission/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Prevalence , Program Evaluation , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Symptom Assessment
17.
Elife ; 92020 05 11.
Article in English | MEDLINE | ID: covidwho-236326

ABSTRACT

Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3 week period (April 2020), 1032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19)>7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B∙1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff.


Patients admitted to NHS hospitals are now routinely screened for SARS-CoV-2 (the virus that causes COVID-19), and isolated from other patients if necessary. Yet healthcare workers, including frontline patient-facing staff such as doctors, nurses and physiotherapists, are only tested and excluded from work if they develop symptoms of the illness. However, there is emerging evidence that many people infected with SARS-CoV-2 never develop significant symptoms: these people will therefore be missed by 'symptomatic-only' testing. There is also important data showing that around half of all transmissions of SARS-CoV-2 happen before the infected individual even develops symptoms. This means that much broader testing programs are required to spot people when they are most infectious. Rivett, Sridhar, Sparkes, Routledge et al. set out to determine what proportion of healthcare workers was infected with SARS-CoV-2 while also feeling generally healthy at the time of testing. Over 1,000 staff members at a large UK hospital who felt they were well enough to work, and did not fit the government criteria for COVID-19 infection, were tested. Amongst these, 3% were positive for SARS-CoV-2. On closer questioning, around one in five reported no symptoms, two in five very mild symptoms that they had dismissed as inconsequential, and a further two in five reported COVID-19 symptoms that had stopped more than a week previously. In parallel, healthcare workers with symptoms of COVID-19 (and their household contacts) who were self-isolating were also tested, in order to allow those without the virus to quickly return to work and bolster a stretched workforce. Finally, the rates of infection were examined to probe how the virus could have spread through the hospital and among staff ­ and in particular, to understand whether rates of infection were greater among staff working in areas devoted to COVID-19 patients. Despite wearing appropriate personal protective equipment, healthcare workers in these areas were almost three times more likely to test positive than those working in areas without COVID-19 patients. However, it is not clear whether this genuinely reflects greater rates of patients passing the infection to staff. Staff may give the virus to each other, or even acquire it at home. Overall, this work implies that hospitals need to be vigilant and introduce broad screening programmes across their workforces. It will be vital to establish such approaches before 'lockdown' is fully lifted, so healthcare institutions are prepared for any second peak of infections.


Subject(s)
Asymptomatic Infections , Clinical Laboratory Techniques , Health Personnel , Betacoronavirus/physiology , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Female , Humans , Infection Control , Male , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL